

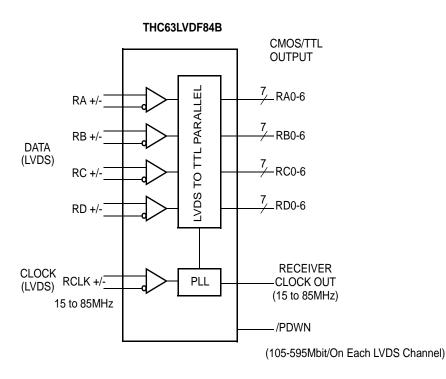
THC63LVDF84B

LVDS 24Bit COLOR HOST-LCD PANEL INTERFACE RECEIVER (Falling Edge Clock)

General Description

The THC63LVDF84B receiver supports wide VCC range(2.5~3.6V). At single 2.5V supply, the THC63LVDF84B reduces EMI and power consumption.

The THC63LVDF84B receiver convert the four LVDS (Low Voltage Differential Signaling) data streams back into 24bits of CMOS/TTL data with falling edge clock. At a transmit clock frequency of 85MHz, 24bits of RGB data and 4bits of LCD timing and control data (HSYNC, VSYNC, CNTL1, CNTL2) are transmitted at a rate of 2.3Gbps.


Features

VCC[V]	Clock Frequency[MHz]				
٧٥٥[٧]	15 to 20	20 to 70	70 to 85		
2.5 to 2.7	n/a	available	n/a		
2.7 to 3.0	available	available	n/a		
3.0 to 3.6	available	available	available		

n/a : not available

- Wide dot clock and Wide VCC range:
- Falling Edge Clock
- PLL requires No external components
- Rx power consumption < 80mW @VCC 2.5V, 65MHz Grayscale
- Power-Down Mode
- Low profile 56 Lead TSSOP Package
- Pin compatible with THC63LVDF84A

Block Diagram

Pin Out

56 VCC 55 RC2 54 RC1 53 RC0 52 GND 51 RB6 50 RD5 49 RD4 48 VCC 47 RB5 46 RB4 45 RB3 RC3 2 RD6 3 RC4 RC4 - 4 RC5 - 5 RC6 - 7 RD0 8 LVDSGND -RA- 9 RA+ 10 RB- 11 9 RB- 11 RB+ 12 LVDSVCC 13 LVDSGND 14 RC- 15 RC- 16 45 RB3 44 GND 43 RB2 42 RD3 41 RD2 40 VCC 39 RB1 38 RB0 37 RA6 36 GND 35 RA5 34 RD1 33 RA4 32 RA3 31 VCC 30 RA2 29 RA1

RC- 15 RC- 16 RCLK- 17 RCLK- 18 RD- 20 LVDSGND 21 PLLGND 22 PLLVCC 23 PLLGND 24 /PDWN 25 CLKOUT 26 RAO 27 GND 28

THC63LVDF84B

Pin Description

Pin Name	Pin #	Туре	Description	
RA+, RA-	10, 9	LVDS IN		
RB+, RB-	12, 11	LVDS IN	LVDS Data Inputs	
RC+, RC-	16, 15	LVDS IN	LVD3 Data Inputs	
RD+, RD-	20, 19	LVDS IN		
RCLK+, RCLK-	18, 17	LVDS IN	LVDS Clock Inputs	
RA0~RA6	27,29,30,32,33,35,37	OUT		
RB0~RB6	38,39,43,45,46,47,51	OUT	Pivel Date Outputs	
RC0~RC6	53,54,55,1,3,5,6	OUT	Pixel Data Outputs	
RD0~RD6	7,34,41,42,49,50,2	OUT		
CLKOUT	26	OUT	Pixel Clock Output	
/PDWN	/DDWN 25		H: Normal operation	
/PDVVIN	25	IN	L: Power down (all outputs are pulled to ground)	
VCC	31,40,48,56	Power	Power Supply Pins for TTL outputs and digital circuitry	
GND	4,28,36,44,52	Ground	Ground Pins for TTL outputs and digital circuitry	
LVDSVCC	13	Power	Power Supply Pin for LVDS inputs	
LVDSGND	8,14,21	Ground	Ground Pins for LVDS inputs	
PLLVCC	23	Power	Power Supply Pin for PLL circuitry	
PLLGND	22,24	Ground	Ground Pins for PLL circuitry	

Absolute Maximum Ratings_

Supply Voltage (V _{CC})	-0.3V ~ +4.0V
CMOS/TTL Input Voltage	-0.3V ~ (V _{CC} + 0.3V)
CMOS/TTL Output Voltage	$-0.3V \sim (V_{CC} + 0.3V)$
LVDS Receiver Input Voltage	-0.3V ~ (V _{CC} + 0.3V)
Junction Temperature	+125°C
Storage Temperature Range	-55°C ~ +150°C
Reflow Peak Temperature / Time	+260°C / 10sec.
Maximum Power Dissipation @+25°C	1.9W

Recommended Operating Conditions

Para	Min.	Max.	Units	
All Supply Voltage		2.5	3.6	V
Operating Ambient Temperature		-10	70	°C
Clock Frequency	VCC=2.5V to 2.7V	20	70	MHz
	VCC=2.7V to 3.0V	15	70	MHz
	VCC=3.0V to 3.6V	15	85	MHz

Electrical Characteristics

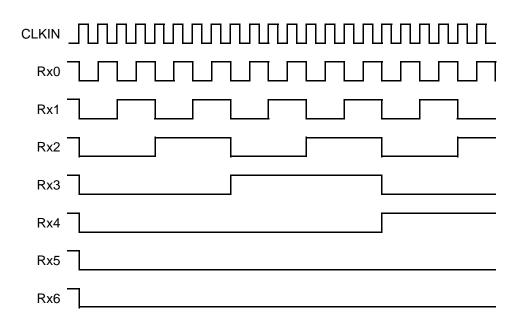
CMOS/TTL DC SPECIFICATIONS

Vcc = VCC = PVCC = LVCC

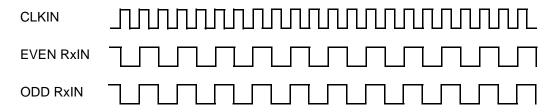
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
V _{IH}	High Level Input Voltage		2.0		VCC	V
V _{IL}	Low Level Input Voltage		GND		0.8	V
V _{OH1}	High Level Output Voltage	VCC= 3.0V ~ 3.6V I _{OH} = -4mA	2.4			V
V _{OL1}	Low Level Output Voltage	VCC = 3.0V ~ 3.6V I _{OL} = 4mA			0.4	V
V _{OH2}	High Level Output Voltage	VCC= 2.5V ~ 3.0V I _{OH} = -2mA	2.1			V
V _{OL2}	Low Level Output Voltage	VCC = 2.5V ~ 3.0V I _{OL} = 2mA			0.4	V
I _{IN}	Input Current	$0V \le VIN \le VCC$			±10	μΑ

LVDS RECEIVER DC SPECIFICATIONS

Vcc = VCC = PVCC = LVCC


Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
V _{TH}	Differential Input High Threshold	VIC = +1.2V			100	mV
V _{TL}	Differential Input Low Threshold	VIC = +1.2V	-100			mV
l	Input Current	$V_{IN} = +2.4V/0V$			±10	
IN	input Gunerit	VCC = 3.6V			_ 10	μΑ

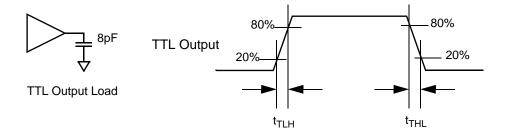
Supply Current


Vcc = VCC = PVCC = LVCC

Symbol	Parameter	Condition(*)		Тур.	Max.	Units
	Pagaiyar Supply Current	CL=8pF, VCC=3.3V	f = 65MHz	41	53	mA
I _{RCCG}	Receiver Supply Current 16Grayscale Pattern	CL=6pr, VCC=3.3V	f = 85MHz	52	64	mA
	ToGrayscale Pattern	CL=8pF, VCC=2.5V	f = 65MHz	30	42	mA
	Receiver Supply Current Worst Case Pattern	CL=8pF, VCC=3.3V	f = 65MHz	72	94	mA
I _{RCCW}			f = 85MHz	84	96	mA
		CL=8pF, VCC=2.5V	f = 65MHz	42	64	mA
I _{RCCS}	Receiver Power Down Supply Current	/PDWN = L			10	μА

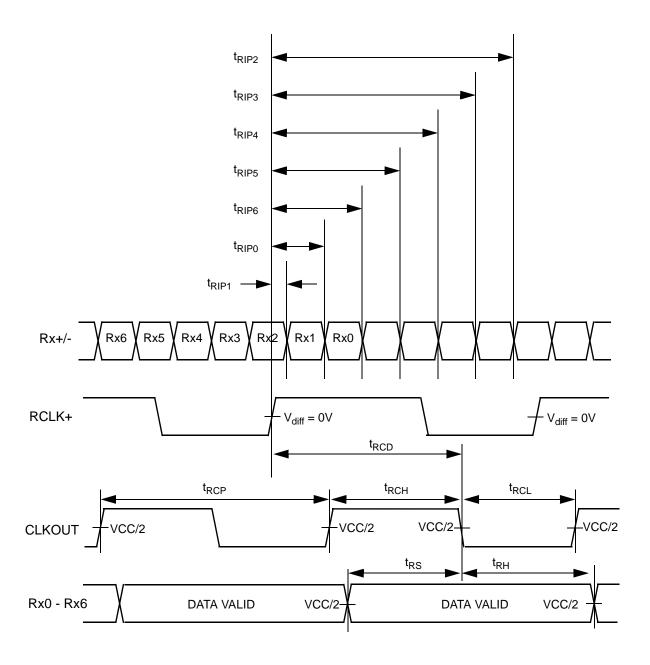
16 Gray Scale Pattern

Worst Case Pattern



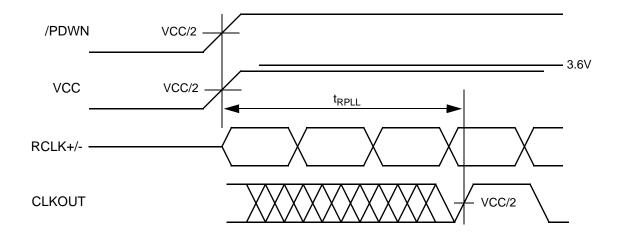
Switching Characteristics

Vcc = VCC = PVCC = LVCC


Symbol	Parameter		Min.	Тур.	Max.	Units
		VCC = 2.5 - 2.7V	14.3	Т	50.0	ns
t _{RCP}	CLK OUT Period	VCC = 2.7 - 3.0V	14.3	Т	66.6	ns
		VCC = 3.0 - 3.6V	11.8	Т	66.6	ns
t _{RCH}	CLK OUT High Time			4T/7		ns
t _{RCL}	CLK OUT Low Time			3T/7		ns
t _{RCD}	RCLK +/- to CLK OUT	Delay		5T/7		ns
t _{RS}	TTL Data Setup to CL	K OUT	0.35T-0.3			ns
t _{RH}	TTL Data Hold from C	KL OUT	0.45T-1.6			ns
t _{TLH}	TTL Low to High Transition Time			2.0	3.0	ns
t _{THL}	TTL High to Low Tran	sition Time		1.8	3.0	ns
t _{RIP1}	Input Data Position0 (T = 11.76ns)	-0.4	0.0	0.4	ns
t _{RIP0}	Input Data Position1 (T = 11.76ns)	T/7-0.4	T/7	T/7+0.4	ns
t _{RIP6}	Input Data Position2 (T = 11.76ns)	2T/7-0.4	2T/7	2T/7+0.4	ns
t _{RIP5}	Input Data Position3 (T = 11.76ns)	3T/7-0.4	3T/7	3T/7+0.4	ns
t _{RIP4}	Input Data Position4 (T = 11.76ns)	4T/7-0.4	4T/7	4T/7+0.4	ns
t _{RIP3}	Input Data Position5 (T = 11.76ns)	5T/7-0.4	5T/7	5T/7+0.4	ns
t _{RIP2}	Input Data Position6 (T = 11.76ns)	6T/7-0.4	6T/7	6T/7+0.4	ns
t _{RPLL}	Phase Lock Loop Set			_	10.0	ms

AC Timing Diagrams TTL Output

AC Timing Diagrams



Note: 1) $Vdiff = (RA+) - (RA-), \dots (RCLK+) - (RCLK-)$

AC Timing Diagrams

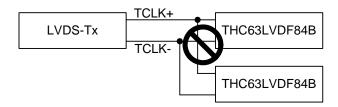
Phase Lock Loop Set Time

Note

1)Power On Sequence

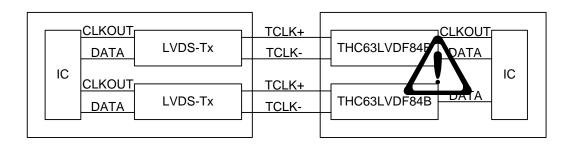
Power on LVDS-Tx after THC63LVDF84B.

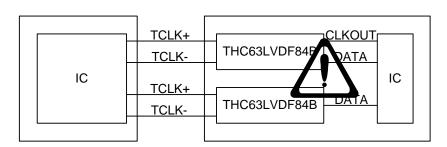
2)Cable Connection and Disconnection


Don't connect and disconnect the LVDS cable, when the power is supplied to the system.

3)GND Connection

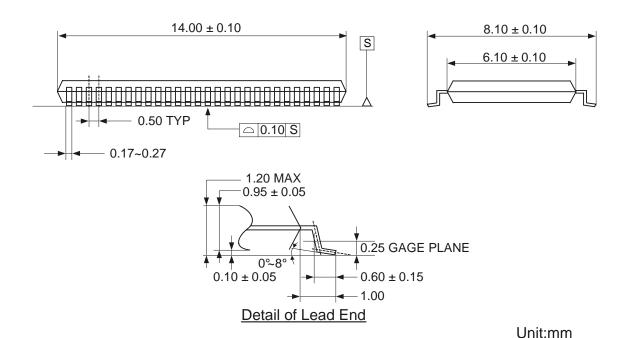
Connect the each GND of the PCB which LVDS-Tx and THC63LVDF84B on it. It is better for EMI reduction to place GND cable as close to LVDS cable as possible.


4) Multi Drop Connection


Multi drop connection is not recommended.

5) Asynchronous use

Asynchronous use such as following systems are not recommended.



Package

Notices and Requests

- 1. The product specifications described in this material are subject to change without prior notice.
- 2. The circuit diagrams described in this material are examples of the application which may not always apply to the customer's design. We are not responsible for possible errors and omissions in this material. Please note if errors or omissions should be found in this material, we may not be able to correct them immediately.
- 3. This material contains our copy right, know-how or other proprietary. Copying or disclosing to third parties the contents of this material without our prior permission is prohibited.
- 4. Note that if infringement of any third party's industrial ownership should occur by using this product, we will be exempted from the responsibility unless it directly relates to the production process or functions of the product.
- 5. This product is presumed to be used for general electric equipment, not for the applications which require very high reliability (including medical equipment directly concerning people's life, aerospace equipment, or nuclear control equipment). Also, when using this product for the equipment concerned with the control and safety of the transportation means, the traffic signal equipment, or various Types of safety equipment, please do it after applying appropriate measures to the product.
- 6. Despite our utmost efforts to improve the quality and reliability of the product, faults will occur with a certain small probability, which is inevitable to a semi-conductor product. Therefore, you are encouraged to have sufficiently redundant or error preventive design applied to the use of the product so as not to have our product cause any social or public damage.
- 7. Please note that this product is not designed to be radiation-proof.
- 8. Customers are asked, if required, to judge by themselves if this product falls under the category of strategic goods under the Foreign Exchange and Foreign Trade Control Law.